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Abstract. Casimir Operators for semidirect products of some semisimple groups with Heisenberg 
groups are computed. The analysis is carried out using dual representations on Fock space, 
wherein the action of the semidirect products are related to their dual groups. namely certain 
unitary, onhogonal, and symplectic groups. The compact sympleaic group chain is also 
investigated; by passing to the complexification, groups ~’behveen’ the sy!nplectic groups ax 
constructed, which are of the form of semidirect products of symplectic groups with Heisenberg 
groups. 

1. Introduction 

If G is a symmetry group, then the universal enveloping algebra U of its Lie algebra B 
is an algebra of tensor operators and the invariant operators which form the centralizer of 
B in U are called Casimir invariants. The importance of these Casimir invariants is due 
to a fundamental theorem of Chevalley and Racah which states: ‘For every semisimple Lie 
algebra B of rank n, there exists a set of n algebraically independent generators consisting of 
Casimir invariants whbse eigenvalues determine uniquely the finite-dimensional irreducible 
representations of R’. which in physical terms means that the spectra of the invariant 
operators associated with G determine the quantum numbers. In this paper we will 
generalize the Chevalley-Racah theorem for a class of representations of semidirect products 
of semisimple Lie groups with Heisenberg groups on a Fock space. Quesne [I] bas given 
a set of Casimir operators of a semidirect sum of the unitary, orthogonal, and symplectic 
algebras with a Heisenberg Weyl algebra. These results are special cases of ow results (case 
n = N in section 2 and n = [ N / 2 ]  in sections 3 and 4). Moreover, we exhibit a complete 
set of algebraically independent Casimir operators in every case. Our work makes use of 
the following set-up. 

Let CnXN denote the vector space of all n x N complex matrices. Define a Gaussian 
measure p on CnxN by 

-T 
dp(Z) =nPNexp[-Tr(ZZ*)JdZ Z E C n X N  Z” = Z (1.1) 

where in (1.1) dZ  denotes the Lebesque measure on CnxN. The Fock space F(CnxN) 
consists of entire functions on CnXN which are square integrable with respect to the Gaussian 
measure dk(Z). Endowed with the inner product 

(1 .2) 
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(f lg) = / f (Z)g(z) dp(Z) f, g E P(CnxN) 
C ” X N  
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F(CnxN) has a Hilbert space stmcture. Actually F ( P x N )  has a reproducing kernel K, i.e. 
K is a continuous function from CnxN x CnxN to C such that 

W H Klink et al 

for all 2 E CnxN and f E F(CnXN).  It can be easily shown that K ( z ,  z') = exp(Tr(z(z')*)). 
Moreover, if F(CnxN) is endowed with the inner product 

(f.g) = f ( D ) g ( n z = o  (1.3) 
where f(D) denotes the formal power series obtained by replacing Z,, by the partial 
derivative a/aZ,, (1 4 01 <, n, 1 ,< j < N), then the inner products (1.2) and (1.3) 
coincide on 3(CnxN).  Note that the subspace P(CnxN) of all polynomial functions on 
CnxN is dense in F(CnxN). 

We will make extensive use of the notion of dual representations as defined in Klink 
and Ton-That [Z]. In the context of reductive groups the notion of dual representations 
coincides with that of complementary pairs of Moshinsky and Quesne 131 and of reductive 
dual pairs of Howe [4]. Dual representations are defined as follows. 

Definition. Let G and G"be two Lie groups (not necessarily reductive); Let R (R') be a 
representation of G (G') on F(CnxN)  such that the two actions commute. Assume that R 
(R')  is completely reducible; then the representations R of G and R' of G' are said to be 
dual if the spectral decomposition of R determines that of R' completely. 

.~ - ~~ 

In the theorems that are proved in this paper we will need this more general notion 'of 
dual representations. As a representation space of the joint action R 8 R' the Hilbert space 
F(CnXN) is decomposed into an orthogonal direct sum 

where in (1.4) the label (A) characterizes both an equivalence class of an irreducible 
representation Ac of G and an equivalence class of an irreducible representation Ac, of 
G', and Z@) = Z(')(CnXN) denotes the (A)-isotypic component, i.e. the direct sum of all 
irreducible subrepresentations of R (R') that belong to the equivalence class Ac (kc,). 
Moreover, the restriction of R @I R' to Z(*) is irreducible and the sum ranges over all such 
(1). 

Let 8 (g) denote the Lie algebra of G (G'), let dR (dR') denote the differential of R 
(R'). Then d R  (dR') is a representation of E (8') on F(CnXN) which we shall refer to as 
the infinitesimal action of R (R'). Let dRp (dRb.) denote the Lie algebra of operators on 
F(CnXN) generated by the infinitesimal action of R (R'). Let UR 5 U(Rc) (UR, = U(R&) 
be the universal enveloping algebra of dRp (dRp,) then the centre 2WR) ( ~ ( U R , ) )  is called 
the algebra of all Casimir invariants of R (R'). 

The following fundamental theorem concerning Casimir invariants which is a 
straightforward generalization of several particular cases proved in [5-71 will be used 
repeatedly in this paper. 

Theorem 1. Let R and R' be two dual representations of G and G', respectively, on 
the Fock space F(CnXN).  Let W n x ~  denote the Weyl algebra defined by the generators 
(Zei, a/aZ,i; 1 4 CY < It, 1 < i ,< N), if UR and U,, are mutual commutants in W n x ~ ,  
then the algebras of Casimir invariants-of R and R' coincide as an algebra of operators on 
F(CnXN). Moreover, this common algebra is finitely generated. 
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Our strategy for finding Casimir invariants of representations of semidirect products of 
groups can then be formulated as follows. 

Given a semidirect product of groups (most of the time a semisimple Lie group with 
a Heisenberg group), say G', find a representation R' of G' on F(CnXN) and show that 
this representation is dual to a representation R of a group G whose R-Casimir invariants 
are known, then apply theorem 1 to find an explicit set of generators. As we shall see, 
this strategy works for the representations of semidirect products of groups considered in 
sections 2, 3 and 4, namely semidirect products of U@), Sp(2n. a), and SOX(2n) with 
Heisenberg groups. However, in section 5 we will exhibit a representation of a semidirect 
product of a simple Lie group with a Heisenberg group whose dual is a representation of a 
semidirect product of a semisimple Lie group with an Abelian group, and both algebras of 
Casimir tnvariants are equally difficult to determine. 

It should be pointed out that in OUT explicit computation of the generators of Casimir 
invariants of R, bases (over W) of G are chosen so that they also constitute bases (over C) 
of the complexification G' of G, and therefore, we can consider the generators as elements 
of the centre of the universal enveloping algebra U@) (with the obvious embedding 
U(G) c U@)). This principle will be applied throughout this paper. 

2. Casimir operators of U ( n )  K, H ,  

Define the joint action L 8 R of GL(n,  C) x G L ( N ,  C) on F ( C n x N )  by 

[(L 8 R ) ( k  g)f](z) = f ( h - ' Z g )  

for all h E GL(n,  C) , g E GL(N,  C), and f E F(CnxN).  Then the representations L and 
R are dual and we have the following decomposition: 

(A) 

Here the label (A) denotes both a signature of an irreducible representation of GL(n, C) 
of the form (ml , .  . . , mn),  where ml,  . . . , m,, are integers which satisfy the condition 
ml > mz > . . . > m, > 0, and an irreducible representation of GL(n, C) of the forms 

(ml, ..., m,,O, ..., 0) II < N  

(ml ,  ..., " , O ,  ..., O), (ml,  ..., mN) 

- 
N 

n > N .  , 
" 

The submodule Z")(CnXN) denotes the (A)-isorypic component, i.e. the direct sum of all 
irreducible submodules of L (R) that belong to the class (A). The restriction of L €3 R 
to Z(A) (CnxN)  is irreducible and the summation ranges over all such (A). A system of 
generators of the infinitesimal action of L is given by 

Similarly, for R we have 
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We identify G L ( N  - 1, C) with the subgroup of G L ( N ,  C) consisting of all matrices of 
the form 

W H Klink et al 

(-Y) y E GL(N - 1, C). 

If R" denotes the restriction of: to the~subgroup GL(N - 1, C), then a system of generators 
of the infinitesimal action of R is given by 

The dual representation of R" is defined as follows. Let 5 denote the column vector 

and identify the space of column vectors 5 with C", which we equip with the inner product 
((15') = 5°C. Endowed with the bilinear form U defined by ~~((15')  = -Im(<l(') the 
vector space C" has a symplectic structure. The Heisenberg group H.. which is the set 
product C" x R of dimension 2n + 1 over 1, is given a group structure by defining the 
group operation 

(5 .  r )  . K', t') = (t + t', t + t' + t utsIi-9) (2.5) 

for all {, {' E e'' and t ,  t' E R. 

representation KI of H, on F(Cn) by the equation 
Let 3(C*) denote the Fock space over the space of column vectors 1' and define a 

for all f E F(C"). It is easy to verify :that HI is an irreducible unitary representation of the 
Heisenberg group H,. 

The unitary group U ( n )  acts on H. by automorphisms via the map 7 : U ( n )  xH, --f H, 
defined by ~ ( u ,  (5,  t ) )  = (u5, t ) .  The semidirect product U ( n )  K, H(n)  can be defined by 
giving the multiplication and inversion operations: 

(~I , (~I ,~I))(uz,(~z,~z))  = (~I~z ,T( (U;~ , (~ I ,~ I ) ) ) . (~Z.~Z)  

= ( U I U  (U;ltl +'?L,~I +~2+1U(11;'<1152))). 

(U, ( 5 ,  G)-I = (U-', ,(U, (5 ,  t1-I)) 

= (U-', ( -ut ,  4)). 

Since F(CnxN) is isomorphic to F(C"x(N-')) @F(C""'), we can define the representation 
L K <  HI of U @ )  K~ H, on F(CnXN) as follows. 
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Writing 2 E C n x N  as (Z l ,  Z,) E Cnx(N- l )  x Cnxi, and for q1 @U), E F(Cax(N-') ) @  
F(Cnxl),  we have 

[ (L  K T  xi)(K (5,  I ) ) ]  (Col @01~)(zi, 2,) = L(u)Vi(Zi)ni (.(U3 (5 .  t ) - ' ) )  (PI&&)) 

(2.7) 

where L(u)qi(Zl) = q i ( u - ' Z ~ )  and 

Z l ( r ( U ,  (5,  t ) - ' ) ) $ ' N ( Z N )  = XI ((-U<, -t))$'A'(ZN) 

is defined by (2.6). It can easily be shown that L K, xl is a unitary representation of 

To obtain the infinitesimal action of L K, nl, we first compute the infinitesimal action 
of XI using (2.6). Write t = , ( < I ,  . . . , Cn) with {j = xj + iyj, 1 < j < n, and identify an 
infinitesimal generator of the form ((0,. . . , 0, xj, 0, .  . . , 0), 0) with the real parameter xj; 
then an easy computation shows that 

.u(n) K r  Hn. 

Similarly, with the infinitesimal generators ((0, . . . ,O,  yj, 0,. . . ,O), 0) and ((0, . . . ,O), t )  
we respectively obtain 

and 

So if the Lie algebra of left invariant vector fields on H, is spanned by the vector fields Pj, 
Qj, 1 <, j < n, and R which satisfy the relations 

[Pj, S I  = [Qj, Qtl = 0 

[Pj, QkJ = -SjkR 

IPj. RI = [Qj, RI = O  
1 < j ,  k < n 

then we have the representation dxi of the Heisenberg algebra Xn on F(Cn) given by the 
generators 

1 < j < n and dxl ( R )  = i l ,  where I is the identity operator on F(Cn). 
Since 



6862 

and 
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J3 
- - (da(Qj)  + idrrl(4)) = 5j 1 < j 6 n 2 

we can use r j ;  a/a<j, 1 < j < n, and I as generators of the representation dnl of 'If,. 
Collecting all the results above we see that the infinitesimal action of L M, R, induces 
a representation of the semidirect product (sum) Gt(n, C) 6B d?En on F(CnxN) which is 
generated by the following operators: 

1 < a, ,3 < n' L,p as given by (2.2) 

a 
I < y < n  and I. Moreover 

Z y N  az,N 

Equation (2.8) defines the representation of G&, C) @ d?En which is dual to the 
representation R" of GI(N - 1, C) given by (2.4). We now have the following main result 
of this section. 

Theorem 2. Set L,, = Xi=] ,,._. N z I  2 . a/aZ,,, 1 < p. v < n and let [E] denote the 
n x n matrix with (p ,  U) entry in 5.. and for any integer s z 0 let Tr([zy) denote. the 
non-commutative trace operator of [LY; then the algebra of all Casimir invariant differential 
operators of the action (2.7) of the semidirect product U ( n )  M, Hn on F(CnXN) is generated 

(i) the constants and then algebraically independent Casimir operators Tr([L"Is), 1 < s < n, 
i f n x N ;  
(ii) the constants and the N - 1 algebraically independent Casimir operators Tr([L"]"), 
1 < s < N - 1 i f n  > N . ,  , ,~ . ,, 

Proof. Clearly we have the isomorphism F(CnXN) = F(C"x(N-'l ) 8 F(Cnxl) ,  so under 
the restriction to_GL(N - 1, CJ the representation R can be considered as the tensor product 
representation R 8 I ,  where R is the representation of GL(N - 1, C) on F(C"x(M-L)) and 
I is the identity representation of GL(1,C) on F(Cnxl). Similar to (2.1) we have the 
decomposition 

- 

by 

where (p) denotes both the signature of an irreducible representation of GL(n, C) and an 
irreducible representation of GL(N - 1, C). Thus 
(i) If n < N then (p) is of the form (el ,..., &), with e ,  > l2 2 ... > e.  > 0 for 
GL(n, C), and of the form 

(el , .  . . , e,, 0. . . . I  0) - 
N-I 

for G U N  - 1, C), 
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(ii) If n > N then (p) is of the form 

( l l ,  ... , &-I. 0, . . ., 0) , 
n 

for GL(n ,  C) and of the form (el..  . . , &I)  for GL(N - 1, C). 

F(CnX(N-l)) defined by 
In this context the dual representation of R" is the representation L" of GL(n,  C) on 

L"(h)pl(Z~) = pl(h-IZ~) V h E GL(n ,  C) and V pp1 E F(Cnx(N-l)  ). (2.10) - 
The infinitesimal generators of L are 

l Q p , u Q n .  
I a 

i d .  .... N-I 
(2.11) 

- 
If [E] denotes the ( N  - 1) x ( N  - 1) matrix whose (a, b)  entry, 1 Q a, b Q N - 1, is Rub as 
defined by (2.41, then it follows from lemmas 3.1 and 3.2 of Klink andzon-That [5] that if 
n e N then the algebra of all Casimir invariants of the representation R of G L ( N  - 1, C) 
is ge_nerated ky the constan$ and by the n algebraically independent Casimir operators 
Tr( [R] ) ,  Tr([R]*),  . . . , TrJ[R_I"). Similarly the algebra of all Casimir invariants of the 
dual representation (to R )  L of GL(n,  C) is generated 64: the constans and by the n 
algebraically independent Casimir operators Tr([L]) ,  Tr(rLl2), . . . , Tr([L]"). Moreover 
these two algebras of Casimir invariants coincide. The same conclusion holds for the 
case n > N except we now have N - 1 algebraically independent Casimir operators. 

We have shown that the representation L P(,JCI of U(n) K rH, is dual to the representation 
R" of U ( N  - 1) on F(CnxN). So by theorem 1 the algebra of all Casimir invariants of 
the representation L K,. 111 of  U ( n )  K, H,, coincides with the algebra of Casimir invariants 
of the representation R of U ( N  - 1) which, in turn, coincides with the algebra of Casimir 
invariants of the representation L" of V ( n ) ,   and^ hence the conclusion of the theorem 
follows. U 

3. Casimir operators of &2n, R) K~ H% 

We consider next the restriction of the representation R on 3 ( C n x N )  to the orthogonal 
group of order N .  As mentioned in the introduction, for the purpose of finding Casimir 
operators it suffices to compute the infinitesimal and its dual actions, but for the sake of 
completeness we will also describe briefly the dual group actions. We realize the orthogonal 
group of order N ~ a s  follows. Let S denote an N x N matrix such that S = S-I  ST and 
let G" = (g E G L ( N ,  C) : gSgT = S}; let G denote the compact real form of G@.  Then 
the infinitesimal generators of the restriction o f ~ R  to G are 

For example, when S = I N  we have the standard form of the orthogonal groups O ( N )  and 
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To find the dual representation of this infinitesimal action, we consider the polynomials pep 
defined by 

W H Klink et a1 

pa,&) = (zszT),~ 1 < a. p < n (3.2) 

where ( )np denotes the (a, p )  entry of the matrix ( ). Since gSgT = S for all g E G@, 
we have 

R;,P&) = Pep(ZS) = ( ( z g ) s ( z g ) T ) ,  

= (ZgSgTZT),p 

= (ZSZT), = p,p(Z). 

Thus the pep’s are RG-invariant; in fact, by the theory of polynomial invariants they are 
algebraically independent and together with the constants they generate all Rc-invariant 
polynomials I S ] .  Define 

for all f E F((CxN) and all a, fl  = 1,. . . , n, and recall that 

a N 

Le# = zui -. 
i=l a zpi 

Then an easy computation shows that 
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then the real symplectic group Sp(2n.R) can be realized as the set of all matrices 
h E GL(2n,  R) such that hu,hT = U" and its Lie algebra sp(2n,  R) consists of all matrices 
of the form 

where X,, Xz, and X3 are real n x n matrices with X 2  and X3 symmetric. If Mij denotes 
the 2n x 2n matrix with the ( i ,  j )  entry equal to 1 and all the other entries equal to 0, then 
the set 

(Map - Mp+n.u+n, Mu.p+. + MB,~+. ,  M,+,,p + Mp+d 1 < a, B < n 

forms a basis of S p ( 2 n , R )  and the linear map which sends Mmp - Mp+n,u+n to Emp, 
M,.p+. + Mp.=+,, to Pap, and M,+,,p + M B + ~ . ~  to D,p defines a faithful representation of 
Sp(2n, R) on F(CnXN). By construction this representation is dual to the infinitesimal action 
of RG.  Let G' denote Sp(2n,  R) and let LG' denote the dual representation of RG,  then 
the pair ( R ~ .  L ~ ' )  forms the oscillator representation of the pair (c, G') on F ( c ~ ~ N )  ~41. 
Actually, to be precise, LG' is a unitary representation of the two-sheeted covering group, 
G; called the metaplectic group, of G'. This representation is explicitly given in Kashiwara 
and Vergne [9, p 1 1 1  as a representation of G; on the Schrodinger space LZ(RnxN),  and 
to obtain the representation LG; on the Fock space F(CnxN) we must use the unitary 
Bargmann-Segal transform from the Schradinger space onto the Fock space [ l o ,  1 1 1 ;  the 
final form of this representation is quite complicated and, since we do not need it, we will 
not exhibit it here. 

As in section 2 we have the following decomposition: 

(3.4) 

where the label (AG) denotes both a signature of an irreducible representation of G and a 
non-singular Harishxhandra parameter of a discrete series xk of  G' [12]. More precisely, 
to each (AG) there corresponds uniquely a sequence of integers ml , mz, . . . which satisfy the 
(dominant condition ml > m2 > . .. > 0 and form the signature (ml, . . . , m.) if n < [ N / 2 ]  
and the signature (ml.. . . , mcN/z]) if [ N / 2 ]  < n, where [N/21  denotes the integral part of 
N / 2 .  

Let [ R G ]  denote the mabix whose (i ,  j )  enhy is given by (3.1), then the algebra of 
Casimir operators of the representation RG is generated by the algebraically independent 
non-commutative differential operators Tr([RG]*'); 1 < i < n if n < [ N / 2 ] ,  and 
1 < i, < [ N / 2 ]  if [ N / 2 ]  < n. (See Barut and Raczka [131 and hlebenko [14] for 
details.) In fact, letting 
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we obtain the operators of the form given in hlebenko [14], and to apply theorem 1, we 
should use the form 

W H Klink et a1 

if N = 2p and 

s =  0 1 0  ip, b") 
if N = 2 p  + 1. 

D,p, respectively, as given in (3.3) and set 
Let E ,  P ,  D denote the matrices whose (or. B )  enhy, 1 < a, p < n, is .Ecls, Pap, and 

[LG'I = [ E ] 
D -ET 

then according to theorem 1 the algebra of Casimir operators of the representation Lo' 
coincides with the algebra of Casimir operators of the representation RG. Furthermore, it is 
generated by the algebraically independent operators Tr([LG'I2'); 1 < i < n if n < [ N / 2 ] ,  
and 1 < i < n if [ N / 2 ]  < n. Note that the Eup generate a subalgebra 7& the Pup generate 
a subalgebra P+, and the Dcp generate a subalgebra p- in such a way that 7i + 'p+ + Q- 
gives a realization of the Lie algebra sp(2n, C). 

Set G = GN and identify GN-I with the subgroup of G N  which consists of all matrices 
of the form (-:-!:) Y E G N - I .  

Iff? denotes the resbiction of RG to GN-I .  then a system of generators of the infinitesimal 
action of I?' is given by 

(3.5) 

where SN-' denotes the matrix of a non-degenerate s y h e t r i c  bilinear form of C?""'. We 
will only give the infinitesimal dual action of E', the dual group action can be obtained in a 
similar fashion as in the case R" of  section 2. This infinitesimal dual action is a representation 
of the semidirect product (sum) of sp(2n, C) f3d: Xn on +(CnxN) which is generated by 
the following operators 

Eup Pop and Dup 1 <a, p Q n as given by (3.3) 

1 < y < n and I. Moreover, we have 
a 

az,N 
ZYN - ~~ 

(3.6) 



Casimir operators of semidirect products 6867 

Let 

Fe+4 = -~ , zejSyz,i 
i . j=I .  ..., N-1  

(3.7) 

a i  
azFi 2 + - ( N  - I)S,p. 

id. .... N-I - - -  - -  
Let E ,  P, D denote the mahices whose (a. p )  entry, 1 < a, p < n, is E m ~ ,  Pap. and &+4, 
respectively, as given by (3.7), and set - -  
then we have the following theorem. 

Theorem 3. Let ?p(2n, R) denote the two-sheeted covering group of the symplectic group 
Sp(2n, R) (the metaplectic group) then the algebra of211 Casimir invariant differential 
operators of the representation of the semidirect product Sp(2n, Et) K H. which is dual to 
the representation zG on F(CflXN) is generated by: 
(i) the constants and the n algebraically independent Casimir operators Tr([zG']25). 1 < 
s < n, if n < [N/2];  
(ii) the constants and the [ N / 2 ]  algebraically independent Casimir operators Tr([L"G']"), 
1 < s < [ N  - 11/2, if [N/2]  < n. 

Proof. We have the decompositions 

~ ( c ~ x N )  = c & ( Z ( P C ~ - ~ ) ( C " X ( N - I )  @ 3 ( C 9 )  ( 3 . 8 ~ )  

F ( , ~ + V - I ) )  = ~ Z ( ~ O ~ - ~ ) ( ~ ~ " X ( N - I )  ) (3.8b) 

(PGN.,) 

(P%, ) 

where in ( 3 . 8 ~ )  the Fock space F(CnxN) is decomposed into a direct sum of isotypic 
components under the dual actions of GN-I  x I and ?p(2n, R) K <  H,, and in (3.8b) the 
Fock space 3(C"x(N-'))  is decomposed into isotypic components of the  dual actions of 
G N - I  and GIEI-l 
(i) n < [ N / 2 ]  then n < [ N / 2  - 11 and (pea-,) corresponds to the signature (el, . . . , &), 
el > " '  >~e" > 0. 
(ii) n > [ N / 2 ]  then n > [ ( N  - 1)/2] and ( p ~ ~ - ~ )  corresponds to the signature 

It follows from [7] that the algebra of all Casimir invariants of thejual representations 
I?G and zG' coincide and they are generated either by the $stem (Tr([RG]')}$. where [RG] 
is the ( N  - 1) x ( N  - 1) matrix whose (a .  b) entry is RZ, is given by (3.3, or by the 
system ( T r ( [ ~ G ' ~ ) ] , v ,  with 1 < s < n i f n  < [N/2], and 1 < s < [ ( N -  1)/21 if [ N / 2 ]  < n. 
But since the actions Of GN-1 x I and Sg(2n, R) K, H, on F((C"Y~N-")88(C"x') are dual, 
theorem 1 implies that thealgebra of Casimir invariants of the action of Sp(2n,  R) K, H, 
on F(CnxN) coincide with that of KG 8 I ,  and hence, by transitivity $e conclusion of the 
theorem follows. 0 

Yp(2n. R). Thus if: 

(e l , .  . . , e[(N-l)/21). 
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4. Casimir operators of SO'(2n) K, (H,, x Hn) 

Let N be an even integer and consider the restriction of the representation R on the Fock 
space +(enxN) to the symplectic group of order N .  The symplectic group, denoted by G 
in this section (not to be confused with G in sections 2 and 3) is the subgroup of G L ( N ,  6) 
that preserves a nondegenerate skew symmetric bilinear form of CN. Let U be the matrix 
of this form with respect to some basis of CN, then U-' = -U = uT and 

W H Klink et a1 

G = {g E G L ( N ,  C)lgugT = U } .  

Let RG denote the restriction of R to G, then a system of generators of the infinitesimal 
action of RG is given by 

As in the case of the orthogonal group, to find the dual representation of the infinitesimal 
action of RG we consider the non-constant generators of all Rc-invariant polynomials 
defined by 

pmp(z) = (zuz'),~ = z,,ujizpi 1 <a, 0 < n 
i . j-I.  .... N 

and the G-invariant differential operators 

If 

J. = ( l n  ) and 
0 -1. 
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then 

SU(n, n) = {g E GL(2n, C)[gJ.gt = J,]  

~ 0 * ( 2 n )  = [g E SU(n,n)lgS,gT =-s,] 
and 

and the Lie algebra S0*(2n) of SO'(2n) consists of all matrices of the form 

(-$ -"A.) 
where A, B are n x n matrices with A skew-Hermitian and B skew-symmetric. The 
complexification of S0*(2n) ,  which can be identified with SO(2n, C), is the set of all 
matrices of the form 

x=(;: -XT " )  
where XI, XZ, and X3 are complex matrices of order n, and XI, X 3  are skew-symmetric. 
The sef 

{Map - M ~ + w + ~ ,  &.a+. - Mp.=in. 

forms a basis of S 0 ( 2 n ,  C) and the linear map which sends Map - MJ+~..+~ to E,@, 
M,,p+. - M5,a+n to Pap, and Mp+. .. - Ma+n,p to D,,p defines a faithful representation of 
SO"(2n) on F(CnxN). By construction this representation is dual to the infinitesimal action 
of RG.  Let G' denote SO"(2n) and let LG' denote the dual representation of RG, then the 
pair (RG,  LG') forms the oscillator representation of the pair (G, G') on F(CnxN)  (cf [4]). 
As in section 3 we refer the reader to [9-111 for the global action of LG' on J(CnxN). 

- M,+n,pl I <a, B < n 

Again we have the decomposition 

F(cnxN) C@Z"G)(C"YN) 
lit) 

where (hc) corresponds to the signature (ml ,  . . . . m.) for G' and the signature 

( m l ,  . . . , m,, 0, . .., 0) 

(4.3) 

" 

forG'and(ml ,  ..., mN/z)for G i f n 2 N f 2 .  
Let [ R c ]  denote the matrix whose (i. j )  entry is given by (4.1), let 

[LG'I= [ E  ] 
D -ET 
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denote the 271 x 2n matrix whose entries E.#, P=,p, and De,! are given by (4.2). Then by 
theorem 1 the algebras of the representations RC and LG’ coincide and they are generated 
by the constants and by the algebraically independent non-commutative trace operators 
Tr([RGI2’), or equivalently, Tr([Lc’l2‘), 1 < i < n if n < N / 2 ,  and 1 < i < N / 2  if 
n > N / 2 .  Again we remark that the Eup generate a subalgebra Tc, the Pep generatc a 
subalgebra p+, and the Dab generate a subalgebra p- in such a way that 7~ + p+ + p- 
gives a realization of the Lie algebra S 0 ( 2 n ,  C). 

So far, the dual representations of S p ( N )  and SO’(2n) behave exactly as the dual 
representations of O ( N )  and Sp(2n. R) as treated in section 3, but, as we shall see, there 
will be a quite remarkable and interesting difference when we restrict the action of S p ( N )  
to a subgroup isomorphic S p ( N  - 2). This difference arises not because there is no natural 
subgroup Sp(N - I), so that the restriction goes down by two steps (as will be discussed in 
the conclusion, the treatment of the restriction of the actions of U ( N )  to U ( N - M )  or O(N) 
to O(N - M ) ,  1 < M < N - 1, is a straightforward generalization of the case M = I),  but 
because of the action of the group SO*(2n) on the Heisenberg group H:-’ x IT:, which 
we shall define shortly, is quite different from the action of the group V(n)  on H:-’ x IT:, 
for example. This interesting phenomenon leads us to search for a group sitting between 
S p ( N )  and Sp(N - 2) which would play the role of the ‘missing subgroup Sp(N - I)’; 
this will be investigated in section 5. 

Choose U = U N , ~  of the form 

W H Klink et ai 

where 

and U N ~ ,  is a (N - 2) x (N - 2) matrix such that ( u N ~ - I ) - ]  = - U N ~ I U ~ / ~ - , .  Let 
G 
the subgroup of G which consists of all matrices of the form (-:-: -:;) Y E GN-2. 

G N  be defined by this form U and identify the subgroup G N - ~  defined by L?V/2-1 with 

If Ec denotes the restriction of RC to GN-z, then a system of generators of the infinitesimal 
action of Ec is given by 

The infinitesimal dual action of zc is a representation of the semidirect product SO*(%Z)$di 
X.,. on F(CnxN). The action of the Heisenberg algebra on F(CnXN) is defined by the 
operators 
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which generate a direct sum of two Heisenberg algebras. However, &e action of SO'(2n) 
on this direct sum is indecomposable as seen by the following equation for all U, @, y = 
1, .. ., n: 

Let 

- - -  
Let E ,  P, D, denote the matrices whose (U, 0) entry, I < a, 
respectively, as given by (4.6), and set 

< n, is ,!&, Fapus, and &, 

then we have the following theorem. 

Theorem 4. Let H. x H, denote the Heisenberg group whose infinitesimal action on 
+(CnxN) is given by thegenerators ( Z y , ~ - l .  a/(aZay,N-,), Z,.,N. a/(aZ,,), y = 1, ..., n 
then the algebra of all Casimir invariant differential operators of the representationzf the 
semidirect product SO'(2n) K~ (H. x Ha) which is dual to the representation RG on 
F(CnXN) is generated by 
(i) the constants and then algebraically independent Casimir operators Tr([L"G']Z'). 1 < s < 
n, if n i N / 2 ;  
(ii) the constants and the N / 2  algebraically independent Casimir operators Tr([L"]"), 
1 < s < N / 2 ,  if n 2 N / 2 .  
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Proof. We have the decompositions 

W H Klink et a1 

F(ay:""N) = @ ( Z " G H - d ( C ~ X ( N - 2 ) )  @ F(C"X2)) (4 .74  
('C+>) 

F ( p ( N - - l ) )  = C $ - J @ c ~ - ~ ) ( @ ~ W + Z )  ) (4.76) 

where in (4.7a) the Fock space F(CnxN) is decomposed into a direct sum of isotypic 
components under the dual actions of Gn-2 x 12 and SO*(Zn) K, (H,  x H,) and in 
(4.7b) the Fock space F(C"X(N-2)) is decomposed under the dual actions of G N - ~  and 
GL-* E3 SO*(Zn,R). Thus if 
(i) n < N / 2  then n Q N / 2  - 1 and ( p ~ ~ - ~ )  corresponds to the signatures 

(PGN-,) 

(el , .  .., e.,o, . . . I  0) 
L_c_ 

N f Z - l  

of GNmZ and (e,, . . .,e.) of 
(ii) n > N / 2  then n 
of GN-2 and 

2,  > . . . > e, 2.0. 
N / 2  - 1 and (pcNmt) corresponds to the signatures (11, . . . , ~ N / z - I )  

( ~ I , . . . ~ ~ N / Z - l ~ ~ ~ . . . , ~ )  

n 

of GL+ 
As in section 3, it follows from 171 and theorem 1 that the algebra of all Casimir 

invariants of the action of S0*(2n) D ( ~  (H,  x H,) on F(CnxN) is generated by the system 
U [TI([L"~]~)],~,  1 < s < n if n < N / 2 ,  and 1 Q s Q N / 2  - 1 if N 2 N / 2 .  

5. Dual representations of the chains Sp(N - 2) c Sp(N - 2) @ H N ~ - L  c S p ( N )  
and SO*(2n) @ (E,,,,,) 3 SO'(2n) ?B 

In this section we let N = 2k and fix a symplectic form 

2 SO'(2n) 

Uk-I I 0 

where 

Then the Lie algebra Bc = sp(2k, Q consists of all matrices of the form 

k - l  k -  1 2 - 
XI I X z  I Wi 

Xa I -XT I Wz 

JW: I -JWT I V 

I --- I~ --- --- 

I I --- --- 
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where Xz and X3 are complex symmetric matrices and the complex 2 x 2 matrix V is 
such that V J  = -JVT.  Recall that since Mij denotes the 2k x 2k matrix with 1 as the 
(i ,  j )  entry and 0 elsewhere, we can choose a basis for sp(2k, C) as follows: 

f. - M..  - M .  
tJ - LJ ~+k-l.i+k-l 

g.. t j  - - M .  r+k-l,j f Mji.k-l.i 1 < i, j < k -  1 
h.. - M.  . 

GJ - w + k - l  f Mj.+i+k-1 

f i . ~ - I  = Mi.u-1 - MZ,i+k-i 

gi+k-1,2-1 = Mi+k-l.w-I + M2k.i 1 < i < k - 1 

0) 

fi.2~ = Mi.% + M~x-I.~+K--I I (5.1) 

I h i + k - i . ~  = Mi+k-i.w - M%-i.i 

fu-I = M w - I . ~ - I  - M2k.w 

gn-1 = M w - i , ~  1 hu-I = Mzk.w-i 

(In) 

where in (5.1) (I) forms a basis forsp(2k-2,  C) and 0II) forms a basis for 4 2 ,  C). Recall 
that 

then  the representation of sp(2k. C) in F(CnxzX) which maps Mi, onto Rij,  Fjj + 

the images of f i j ,  gij, h,j. etc. under this representation. 

k - 1. Then it is easy to verify that 

R.. i, - R. ~+k-l.j+k-l, etc, is faithful. By an abuse of language, let f i j ,  g z j ,  hij, etc, denote 

Let denote the Lie algebra generated by fi.w-1, &+k-l,zk-], and hw-l, 1 < i < 

[fi.zk-11 fj.zk-11 = 0 

[gi+k-1.2k-17 gj+k-l.w-I] = 0 

[fi.w-i, gj+k-I.w-l] = Sij(-2hw-1) 

[ f i , n - ~ . h ~ ~ - ~ l  = O  [gr+k-I,w-l.hw-~l EO.  

1 < i. j < k - 1 
(5.2) 

It follows immediately that ?&-I is a Heisenberg algebra of rank k -  1. An easy computation 
also shows that 

[ f i j -  ft~x-11 = 8jrfi.u-1 

[ $ j >  8L+k-3.2k-i] = -8i~k!j+k-I,zk-l 

(5.3) 
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It follows that we have a semidirect sum Sp(2k - 2, C) 8Xk-1 of Lie algebras. Similarly 
if we let denote the Lie algebra generated by E,=, hi+k-l.u, gZk-1, 1 < i < k - 1, 
then Xi-'_, is a Heisenberg algebra isomorphic to '&-I. In fact the semidirect sums 
Sp(2k-2, C)@~&-I and Sp(2k-2, C)$Xl-, are the two isomorphic maximal Lie'algebras 
sitting between S p ( 2  - 2,C) and Sp(2k .C) .  It can be shown the dual representation 
of Sp(2k - 2, C) d Xk-1 (Sp(2k - 2,  C) @ Xi-'_,) on F(Cnxw) is a representation of 
SU*(2n) d d,, (SU*(2n) @ 4,") on F(Cnx2), where An," (J&) is the Abelian Lie 
algebra defined by the generators 

W H Klink et a1 

(5.4) 

It is also easy to verify that SO*(2n) @ dn., (SU*(Zn) @ d&) is a semidirect product of 
a simple Lie algebra with an Abelian Lie algebra. However, neither the Casimir operators 
of Sp(2k - 2 ,  C) @ Xk-1 nor of SU*(Zn) @ A,,,, are easy to compute. 

6. Conclusion 

We have shown how to compute the Casimir operators of semidirect products of the groups 
U(n)  and Sp(2n, R) with the n-dimensional Heisenberg group as well as the semidirect 
product of SO*(Zn) with the direct sum of the two Heisenberg groups. In every case 
the procedure for computing all the (algebraically independent) Casimir operators was to 
associate a representation of the semidirect product with a dual representation of the compact 
groups U ( N  - I ) ,  O ( N  - I), and Sp(N - 2) ,  respectively (for Sp(N) ,  N must be even) 
on the Fock space F(CnXN). Theorems 2, 3, and 4 prove that the semidirect product 
Casimir operators are equal to the algebraically independent Casimir operators of U ( N -  I ) ,  
U ( N  - l), and Sp(N - Z ) ,  respectively, Casimir operators whose forms are well known. 

Our procedure for obtaining Casimir operators is easily generalized to semidirect 
products of U(n) ,  Sp(Zn,R), and SU*(2n) with direct sums of Heisenberg groups. For 
the semidirect product of U ( n )  with H. d . . . d H,, where the direct sum is taken M 
times, the Casimir operators are just those of U ( N  - M ) ,  1 < M < N - 1. Similarly, the 
semidirect product of Sp(Zn, R), with Hn @ . .. @ Hn has Casimir operators equal to the 
Casimir operators of O ( N  - M ) ,  1 < M < N - 2. The semidirect product of SO'(2n) 
with a direct sum of Heisenberg groups is only defined for M even. The Casimir operators 
are then those of Sp(N - M ) ,  N ,  M even, 2 < M < N - 2. 

Besides the semidirect products discussed in this paper, there are other semidirect 
products of interest whose Casimir invariants can be obtained by the duality arguments 
used in this paper. For example, the semidirect product U ( n )  K Ha, discussed in section 2 
has the subgroup U ( n )  K H,,, with a new set of Casimir operators. In this case U ( n )  K H,, is 
dual to U ( N  - I), so that U ( n )  K H, will be dual to a group containing U ( N  - 1). namely 
Sp(2(N - I), R), whose Casimir operators are known. Casimir operators for groups like 
U(n)  K H, and Sp(n) K H. (and direct sums of H,,) will be discussed in a subsequent paper. 

It is well known that the Gel'fand-htlin scheme for labeling basis elements in 
representation spaces by chains of subgroups works for the unitary and orthogonal, but 
not for the symplectic groups. For the symplectic group chain, S p ( N )  3 Sp(N - 2) 3 
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. .. 3 Sp(2), N even, a given irreducible representation of S p ( N )  will contain irreducible 
representations of Sp(N - 2) with multiplicity in ~eneral greater than one. 

By going to the complexification of the compact group Sp(N) ,  we have found 
a group 'between' Sp(N ,C)  and Sp(N  - 2 , @ ) ,  namely a semidirect product group 
Sp(N - 2,C) K H N - ~ .  In fact, there are two such semidirect products, as seen in 
section 5 ,  equation (5.3) ff. Further we have shown that S p ( N  - 2, C) K HN-Z is a dual 
to SO'(2n) K An,", the semidirect product of SO'(2n) with an Abelian group, with two 
different Abelian groups corresponding to the two different Heisenberg groups. 

However, it is not possible to use the theorems proved in this paper to compute the 
Casimir operators of S p ( N - 2 ,  C) K H N - ~ .  The problem of finding these Casimir operators 
and then using their eigenvalues to resolve the multiplicity of the symplectic group chain 
will be discussed in a subsequent paper. 
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