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Abstract. Casimir operators for semidirect products of some semisimple groups with Heisenberg
groups are computed. The analysis is carried out using dual representations on Fock space,
wherein the action of the semidirect products are related to their dual groups, namely certain
unitary, orthogonal, and symplectic groups. The compact symplectic gronp chain is also
investigated; by passing to the complexification, groups ‘between’ the symplectic groups are
constructed, which are of the form of semidirect products of symplectic groups with Heisenberg

£roups.

1. Introduction

If G is a symmetry group, then the universal enveloping algebra U of its Lie algebra G
is an algebra of tensor operators and the invariant operators which form the centralizer of
G in U are called Casimir invariants. The importance of these Casimir invariants is due
to a fundamental theorem of Chevalley and Racah which states: ‘For every semisimple Lie
algebra G of rank n, there exists a set of n algebraically independent generators consisting of
Casimir invariants whose eigenvalues determine uniguely the finite-dimensional irreducible
representations of G,”. which in physical terms means that the spectra of the invariant
operators associated with G determine the quantum numbers. In this paper we will
generalize the Chevalley—Racah theorem for a class of representations of semidirect products
of semisimple Lie groups with Heisenberg groups on a Fock space. Quesne [1] has given
a set of Casimir operators of a semidirect sum of the unitary, orthogonal, and symplectic
algebras with a Heisenberg Weyl algebra. These resulis are special cases of our results (case
n = N in section 2 and » = [N /2] in sections 3 and 4). Moreover, we exhibit a complete
set of algebraically independent Casimir operaters in every case. Qur work makes use of
"the following set-up.
Let C**¥ denote the vector space of all » x N complex matrices. Define a Gauss1an

measure 4 on C™V by
du(Z) = 7~ exp[—TH(ZZ)AZ Z e C*V =7 (L)

where in (1.1) dZ denotes the Lebesque measure on C*™*N. The Fock space F(C<N)
consists of entire functions on C**¥ which are square integrable with respect to the Gaussian

measure dg(Z). Endowed with the inner product

(flg) =L . F(2)g(Z) du(2) f.g € FCY) (1.2)
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F(C™N) has a Hilbert space structure. Actually F(C"*¥) has a reproducing kernel X, i.e.
K is a continuous function from C™¥ x C**¥ to0 C such that

f@y= [ k@ 2@ au@)

forall Z € C™¥ and f € F(C"*N). Itcan be easily shown that K (z,z") = exp(Tr(z(z)")).
Moreover, if F(C"¥) is endowed with the inner product

f.8)=FD)E@D)lz—0 ' ) (L3)

where f(D) denoctes the formal power series obtained by replacing Z,; by the partial
derivative 8/8Zy (1 € @ < n, 1 £ j £ N), then the inner products (1.2) and (1.3)
coincide on F(C"*¥). Note that the subspace P(C**¥) of all polynomial functions on
C"*¥ is dense in F(C**N).

We will make extensive use of the notion of dual representations as defined in Klink
and Ton-That [2]. In the context of reductive groups the notion of dual representations
coincides with that of complementary pairs of Moshinsky and Quesne [3] and of reductive
dual pairs of Howe [4]. Dual representations are defined as follows.

Definition. Let G and G’ be two Lie groups (not necessarily reductive). Let R (R") be a
representation of G (G') on F(C**¥) such that the two actions commute. Assume that R
(R') is completely reducible; then the representations R of G and R’ of G' are said to be
dual if the spectral decomposition of R determines that of R’ completely.

In the theorems that are proved in this paper we will need this more general notion ‘of
dual representations. As a representation space of the joint action R @ R the Hilbert space
F(C*¥) is decomposed into an orthogonal direct sum

F(Can) = Z@I(l)(cnxh’) (1.4)
(6]

where in (1.4) the label (A) characterizes both an equivalence class of an irreducible
representation Ag of G and an equivalence class of an irreducible representation Ag of
G, and I® = I™(C"™¥} denotes the (A)-isotypic component, i.e. the direct sum of all
irreducible subrepresentations of R (R’) that belong to the equivalence class Ag (Ag).
Moreover, the restriction of R @ R’ to T is irreducible and the sum ranges over all such
Q).

Let G (G) denote the Lie algebra of G (G”), let dR (dR') denote the differential of R
(R"). Then dR (dR") is a representation of G (G) on F(T"*¥) which we shall refer to as
the infinitesimal action of R (R'). Let dRg (dR;.) denote the Lie algebra of operators on
F(C™N) generated by the infinitesimal action of R (R”). Let Ug = U(Rg) Ur = UL(RL)
be the universal enveloping algebra of dRg (dRg) then the centre Z{Up) (Z(Ug)) is called
the algebra of all Casimir invariants of R (R").

The following fundamental theorem concerning Casimir invariants which is a
straightforward generalization of several particular cases proved in [5-7] will be used
repeatedly in this paper.

Theorem 1. Let R and R’ be two dual representations of G and G’, respectively, on
the Fock space F(C**V). Let W,x» denote the Weyl algebra defined by the generators
{Zyi, B/BZO,,-; 1€ae<n1<i €N if Ug and Up are mutual commutants in Wiwy,
then the algebras of Casimir invariants'of R and R’ coincide as an algebra of operators on
F(C™N). Moreover, this common algebra is finitely generated.
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Our strategy for finding Casimir invariants of representations of semidirect products of
groups can then be formulated as follows.

Given a semidirect product of groups (most of the time a semisimple Lie group with
a Heisénberg group), say &', find a representation R’ of G’ on F(C**N) and show that
this representation is dual to a representation R of 2 group G whose R-Casimir invariants
are known, then apply theorem 1 to find an explicit set of generators. As we shall see,
this strategy works for the representations of semidirect products of groups considered in
sections 2, 3 and 4, namely semidirect products of U{n), Sp(2r, R}, and SO*(2r) with
Heisenberg groups, However, in section 5 we will exhibit a representation of a semidirect
product of a simple Lie group with a Heisenberg group whose dual is a representation of a
semidirect product of a semisimple Lie group with an Abelian group, and both algebras of
Casimir invariants are equally difficult to determine. .

It should be pointed out that in our explicit computation of the generators of Casimir
invariants of R, bases (over R} of G are chosen so that they also constitute bases (over C)
of the complexification G€ of G, and therefore, we can consider the generators as elements
of the centre of the universal enveloping algebra Z{(GT) (with the obvious embedding
U(G) C U(GT)). This principle will be applied throughout this paper.

2. Casimir operators of U(n) x, Hy,
Define the joint action L ® R of GL(n, C) x GL(N, C) on F(C"™N) by

[(L® R, &) Fl(2) = F(h™'Zg)
forallh e GL(n,©), g € GL(N,C), and f € F(CT**¥). Then the representations L and
R are dual and we have the following decomposition:
FCNy =3 " @I® @), (2.1)
(2}

Here the label (A) denotes both a signature of an irreducible representation of GL(n, C)
of the form {mi,...,m,), where mi,...,m,, are integers which satisfy the condition
‘my oz my 2. 2 m, 20, and an irreducible representation of GL{(n, C) of the forms

(gnl,...,m,,,O,...,Q) ng N
Y
(le,...,mN,O,...,Q), mi,...,my) n>N.

"

n

The submodule Z®(C"*¥) denotes the (A)-isotypic component, i.e. the direct sum of all
irreducible submodules of L (R) that belong to the class (A). The restriction of L ® R
to Z*(C"=Ny is irreducible and the summation ranges over all such (A). A system of
generators of the infinitesimal action of L is given by

) _
Lg= D, Zaizm—  1<af<n @2)
i=l,....N

K .
Ri= 2. Zuyz—  1<Lj<N. (2.3)
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We identify GL{N — 1, C) with the subgroup of GL(N, C) consisting of all matrices of

the form
y 10
—_— y € GL(N - 1,0C).

0,1

If R denotes the restriction of R to the subgroup GL(N — 1, C), then a system of generators
of the infinitesimal action of R is given by

-~ 3
Rp=Rp= Y zmﬁ—; 1<a, b <N -1 (2.4)
&

The dual representation of R is defined as follows. Let ¢ denote the column vector

Zy

ZyN
and identify the space of column vectors ¢ with C", which we equip with the inner product
(¢1¢") = ¢™*z. Endowed with the bilinear form o defined by o (¢£[¢") = ~Im(¢t]z’) the
vector space " has a symplectic structure. The Heisenberg group H,, which is the set

product C" x R of dimension 2n 4 1 over R, is given a group structure by defining the
group operation

&0 =+ t+ Y+ 1001ED) 2.5)

forall £, ¢ e CPand 1, € R. 3
Let F(C") denote the Fock space over the space of column vectors ¢ and define a
representation my of H,; on F(C") by the equation

W C_J2 '
[m (¢, 1) F1L"y = exp [it + %(é"lé’) - |€'|2:| b (C' +i¢ %) (2.6)

for all £ € F(C"). It is easy to verify 'that 7 is an irreducible unitary representation of the
Heisenberg group H,.

The unitary group U/ (n) acts on H, by automorphisms via the mapt : U(n} x H, — H,
defined by t(x, (¢, £)} = (u¢, #). The semidirect product U(n) x. H(n) can be defined by
giving the multiplication and inversion operations:

(1, (&1, 1)) (2, (G2, 8)) = (w12, T((3", 1 1)) - (G2, 12)
= (uyu, (30 + &0 + 2+ S0y 118)) -
( G0)" = (e @)
= (v, (—ug, —1)).

Since F(C**¥) is isomorphic to F(C™*W-) F(C"*!), we can define the representation
L . m of U(n) x. H, on F(C**V) as follows.
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Writing Z € C™V ag (Z;, Zy) € C*WV-1 5 C**!, and for ¢; @ gy € F(C*WV-h @
F(C**1), we have

[(L % m1)(m, (2, D)) (@1 @ pa} (21, Zw) = Lot (Zo)my (z{u, & O7Y)) (ow (Zn))
2.7)

_where Lo (Z) = ¢~ Z;) and
oz, €, 07))en(Zy) = m((—ut, —1))en(Zx)

is defined by (2.6). It can easily be shown that L . m; is a unitary representation of
Uln) %, H,y.

To obtain the infinitesimal action of L &, m;, we first compute the infinitesimal action
of m; using (2.6). Write { =.(£1,...,¢) with §f = x; +iy;, 1 € f € n, and identify an
infinitesimal generator of the form ((0,...,0,x;,0,...,0),0) with the real parameter x;;
then an easy computation shows that

d iv2 3\

& ﬂl(xj)f(i)len =— (é'j + E) f&).
Similarly, with the infinitesimal generators ((0,...,0,¥,0,...,0),0) and ((0,...,0), 1)
we respectively obtain

d _ V2 )

5 POO| =3 ( 3z ) F©
and

d @@y =ifQ)

& big) [ - =1f{(Z).

So if the Lie algebra of left invariant vector fields on H, is spanned by the vector fields 7;,
Q;. 1< j <n,and R which satisfy the relations

L Pl =125, Q] =0 (7. Rl=1(Q;, R1=0
[Rerk:[:_ij lgjskén

then we have the representation dm; of the Heisenberg algebra H, on F(C") given by the

generators
L2 9
dn1(1’j)——£(§; a;,.) d:rl(Qj)=f§-( 5+ a;,)

1< j<nanddm(R)=il, where [ is the identity operator on F(C").
Since _
2 : 3
- (dm (@) — idm(P)) = 5;:;
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and

_ _‘? (dTL‘l'(Qj) +idm(P)) = ¢ 1<j<n

we can use £, 8/0¢;, 1 € j < n, and I as generators of the representation dmy of H,.
Collecting all the results above we see that the infinitesimal action of L ®; @ induces
a representation of the semidirect product (sum) G£(n, C) @ diH,, on F(C**") which is
generated by the following operators:

Log iSa, 8 as given by (2.2)
a8
3Z,n

Zyn 1<y &n and L. Moreover 2.9)

a3 9
[Laﬁ, Z}'N] = 8‘5},2'“1\!' and [erﬁ; m] = —Sa,,, %’
Equation (2.8) defines the representation of GE(n,C) ® dTH, which is dual to the
representation R of GE(N — I, C) given by (2.4). We now have the following main result
of this section.

Theorem 2. Set Ly, = YimtooN—1 Zui8f0Zuy;, 1 < pv € 1 oand Jet [L] denote the
n x p matrix with (u, v) entry in Ly, and for any integer s > 0 let Tr([L]*) denote the
non-commutative trace operator of [L]"; then the algebra of all Casimir invariant differential
operators of the action {2.7) of the semidirect produet U(n) x; H, on F(C"*") is generated
by

{i) the constants and the n algebraically independent Casimir operators Tr([LF), 1 < 5 € n,
if n < N;

(ii) the constants and the N — 1 algebraically independent Casimir operators Tr([L)*),
1€<ssEN—-1TifnzN.

Proof. Clearly we have the isomorphism F(C**¥) = F(C"*¥-1) @ F(C**!), so under
the restriction to GL(N —1. C) the representation R can be considered as the tensor product
representation R ® I, where R is the representation of GL(N — 1, ©) on F(C"*¥~D) and
I is the identity representation of GL(1,C) on F(C"*!). Similar to (2.1) we have the
decomposition

F(CHW-1) = Z @ TWH(CrxN=12y (2.9
()

where (1) denotes both the signature of an irreducible representation of GL(n, C} and an
irreducible representation of GL(N — 1, C). Thus

(i) f n < N then () is of the form (€y,....¢,), with &, 2 & 2 ... 2 £, 2 0 for
GL(r, C), and of the form

(glr---=£5101°~‘9q)
N:-I

for GL(N —1,C).
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(ii) If n 2 N then (u) is of the form

¢, .-o5 €y—1.0,...,0)
for GL(n, C} and of the form (€;, ..., €xy-1) for GL(N —1,C).

In this context the dual representamn of R is the representation L of GL(n,C) on
F(C>W-1)) defined by

Lie(Z) = o1k~ Z)) YVheGL(n,C) and V¢ € f(«:’*"““—”} (2.10)
The infinitesimal generators of L are

~ é

L= -_12\1_1 Zyi o I pvgn. (2.11)
If [R] denotes the (N — 1) x (N — 1) matrix whose (¢, b) entry, 1 <a,b < N—1,is Eab as

defined by (2.4), then it follows from lemmas 3.1 and 3.2 of Khnk and Jon-That [5] that 1f
n < N then the algebra of all Casimir invariants of the representation B of GL(N — 1,C)
is generated by the constants and by the rn algebraically independent Casimir operators
Tr([R]) Tr([RIz) Tr([R]") Similarly the algebra of all Casimir invariants of the
dual representation (to R) L of GL(n,C) is generated by the constants and by the n
algebraically independent Casimir operators Tr([L]) T[L]D), .. Tr([L]") Moreover
these two algebras of Casimir invariants coincide. The same concIusxon holds for the
case n 2 N except we now have N — 1 algebraically independent Casimir operators.

We have shown that the representation L &7y of U(n) K . H,, is dual to the representation
Rof U (N — 1) on F(C*¥). So by theorem 1 the algebra of all Casimir invariants of
the representation L Kz 71 of U(n) x, H, coincides with the algebra of Casimir invariants
of the representation RofU (N — 1) which, in turn, coincides with the algebra of Casimir
invariants of the representation L of U(n), and. hence the conclusion of the theorem
follows. g

3. Casimir operators of §EJ(2n, R) . Hy

We consider next the restriction of the representation R on F(C**¥) to the orthogonal
group of order N. As mentioned in the introduction, for the purpose of finding Casimir
operators it suffices to compute the infinitesimal and its dual actions, but for the sake of
completeness we will also describe briefly the dual group actions. We realize the orthogonal
group of order N as follows. Let S denote an N x N matrix such that § = §~! =57 and
let GE ={g e GL(N C) : gSg" = S}; let G denote the compact real form of G©. Then
the infifiitesimal generators of the restriction of R to G are

d ..
E (Zm-Sk,- - ZajSk,-) maz 1 S I J S N. (31)
,?—E sl ok

For example, when § = Iy we have the standard form of the orthogonal groups G (¥) and

a a
G_ e o PO
sz = E n(zm 0Za; Zyj azm_) Igi,j<N.

o=l,...,
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To find the dual representation of this infinitesimal action, we consider the polynomials pug
defined by

Pap(@) = (Z5ZD)ap 1w, B<n (3.2)

where ( )qp denotes the (e, 8) entry of the mattix ( ). Since gSgT =S forall g € Gt,
we have

RG\pus(Z) = pap(Zg) = ((Z8)S(Z8)")
= (288" Z )ap
= (ZSZ )ap = Pup(Z).

Thus the pyg’s are RC-invariant; in fact, by the theory of polynomial invariants they are
algebraically independent and together with the constants they generate all RS-invariant
polynomials [8]. Define

3 d
Dos FUZ) = pap(DYf(Z) = 3z, Jigz, | F¢
(Dup f)(Z) = Pap(D)F(Z) (f.f§..~33«1 Jazﬁi) £

forall f e F(C*¥yand all o, $ =1, ..., n, and recall that

¥ 3
Lp=)Y Zu 55
i=] Bi

Then an easy computation shows that
[Dog. Puvl = Sap(Lug -+ 3 N8yg) + 8au(Lyus + & N8yup) + 8pu(Lve + 1 N8ua)
+ 8y (Lua + 5 Nua)

[Laﬁa Pp.v] = aﬁ_upnw + aﬁupap.
[Larﬁ» D,uv] = "aamD,Bv - aowD,B.u.

Set Pug = —Pap, Eog = Log + 172 Ndgg and if T1 denotes the adjoint of the operator T,
then it follows immediately that forall v, B, £, v =1,...,n

(Bag, Epv] = 8gpEay — SavEpp

[Eags Puvl = 8gp Poy + 8y Fory

[Eug, Duv]l = =B Dgy — 8w Dy

[Pag, Duv] = 84 Evg + 80 Epp + dpuEve + 8a0Epe (3.3)
[Pug. Puv] = [Deog, Dyl =0

Pop = Ppu Dy = Diga

Ply = Dug Dy = Py Ely = Ep,.
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( 0 —1,,)

Oy =

I, 0

then the real symplectic group Sp(2n, R} can be realized as the set of all matrices
h € GL(2n, R) such that 2o,AT = o, and its Lie algebra sp(2n, R) consists of all matrices

of the form
X X
X=( 1 z)
X3 X]

where X1, Xo, and X3 are real n x # matrices with Xz and X3 symmetric. If M;; denotes
the 2n x 2n matrix with the (i, f) entry equal to 1 and all the other entries equal to 0, then
the set

If

{Maﬂ - M,B+n.a+m Ma’.ﬁ+n + M,’S,a-{-m Ma+n,ﬁ + Mﬁ-{-n.a} 1€, 6<n

forms a basis of Sp(2rn, R} and the linear map which sends Myg — Mgipain 10 Egp,
Muygin+ Mgasn 10 Pog, and Myzy g + Mayno to Dyg defines a faithful representation of
Sp(2n, R) on F(C**N). By construction this representation is dual to the infinitesimal action
of RC. Let G denote Sp(2n, R) and let LY denote the dual representation of RS, then
the pair (RS, LE") forms the oscillator representation of the pair (G, G) on F(C**V) [4].
Actually, to be precise, LS is a unitary representation of the two-sheeted covering group,
G;, called the metaplectic group, of G'. This representation is explicitly given in Kashiwara
and Vergne [9, p 11] as a representation of G} on the Schrodinger space L2(R™*Y), and
to obtain the representation L% on the Fock space F(C"¥) we must use the unitary
Bargmann—Segal transform from the Schrédinger space onto the Fock space [10,11]; the
final form of this representation is quite complicated and, since we do not need it, we will
not exhibit it here.
As in section 2 we have the following decomposition:

_?:(CHXN) — Z @ l—(ka)(can) (3-4)
(Ag)

where the label (Lg) denotes both a signature of an irreducible representation of G and a
non-singular Harish—Chandra parameter of a discrete series mw, of G’ [12]. More precisely,
to each (Ag) there corresponds uniquely a sequence of integers my, mz, . .. which satisfy the

(dominant condition m; = mq 2 - -+ 2 0 and form the signature (m;, ..., m,) if n < [N/2]
and the signature (m1, ..., mpyz) if [N/2] < n, where [N/2] denotes the integral part of
N/2.

Let [R®] denote the matrix whose (i, /) entry is given by (3.1), then the algebra of
Casimir operators of the representation RC is generated by the algebraically independent
non-commutative differential operators Tr([R]*); 1 < i < rn if n < [N/2], and
1 i < [N/2]if [N/2] € n. (See Barut and Raczka [13] and Zelebenko [14] for
details.) In fact, letting

0 1
S= .
1 0
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we obtain the operators of the form given in Zelebenko [14], and to apply theorem 1, we
should use the form

S=(o 5)
1, 0O

if N=2p and
0 0 1,
S=}0 1 0
1, 0 0

ifN=2p+1.

Let E, P, D denote the matrices whose (&, 8) entry, 1 < o, 8 < n, is Eug, Pog, and
Dyg, respectively, as given in (3.3) and set

o« [E P
[z ]_I:D —ET:|

then according to theorem 1 the algebra of Casimir operators of the representation LY
coincides with the algebra of Casimir dperators of the representation RS. Furthermore, it is
generated by the algebraically independent operators Tr([LS1%); 1 i < nif n < [N/2],
and 1 €i < nif [N/2] < n. Note that the E,p generate a subalgebra 7¢, the P,g generate
a subalgebra P, and the D,; generate a subalgebra B_ in such a way that 7¢c +50,. + P
gives a realization of the Lie algebra sp(2n, C).

Set G = Gy and identify Gy_; with the subgroup of Gy which consists of all matrices

of the form
Y10
(—-l—) ¥ € Gy-1.
0.1

If RS denotes the restriction of RS to Gy_1, then a system of generators of the infinitesimal
action of RY is given by

BpG _ N-1 N—I
Ry, = Z (Z“ﬂskb - ZﬂbSka )
a=[.....n
k=1,....N=1

]
3Zy

I1€a,bgN-1 (3.5)

where S¥~! denotes the matrix of a non-degenerate symmetric bilinear form of CH¥-1, We
will only give the infinitesimal dual action of RE, the dual group action can be obtained in a
similar fashion as in the case R of section 2, This infinitesimal dual action is a representation
of the semidirect product (sum) of sp(2n, C) @z H. on F(C™V) which is generated by
the following operators

Eug Pyp and Deg 1<a 8<n asgiven by (3.3)

Zyn ¢ 1<y <n and ]l Moreover, we have
dZ, N
[Eqg, Zun] =85, Z E 8 = -4 g -
afs 4y N1 = Ofy LaN aff+ aZyN = oy BZ,SN (36)

= Spy o b By —
T 8Zan | 0Zpy

[Pap, Zyn] =0 [Dap, Zyn]

8 g
e I - o
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Let
j;“ﬂ = Z , Zg_;SN_IZ'g;
ij=1,..,N=-1
o a a
Doy = N — I€a, B8R
O et 0Za T 32y S N

- 3 1
By = Zyj —— + 5 (N — 1)dqg.
s=1§’-1 8Zg 2

Let E, F, D denote the matrices whose (o, Byentry, 1 o, 8 <, is ED, , ﬁ,,g, and 5a5,
respectively, as given by (3.7), and set

o~ E F
L% =2 ~
=5 ]

then we have the following theorem.

Theorem 3. LetS p(2n R) denote the two-sheeted covering group of the symplectic group
Sp(2n,R) (the metaplectic group) then the algebra of all Casimir invariant differential
operators of the representation of the semidirect product 3 p(2n, R) %, H, which is dual to
the representation RC on F(C™V) is generated by:

(l) the constants and the » algebraically independent Casimir operators Tr([.JE,cr 1¥), 1K

< n, ifn < [N/2];

(ii) the constants and the [N /2] algebraically independent Casimir operators Tr([EG']zs),
I <s <IN —-11/2,if [N/2] € 1.

Proof. We have the decompositions

F(cﬂKN) = Z é(If#GN-J(C"x(N*D) ® f((cnx‘)) (38(1)
(MGN—I)
FE@V-Dy = §° @Tan) (orx-0y (3.85)
(F"GN_]) )

where in (3.8a) the Fock space F(C**¥) is decomposed into a direct sum of isotypic
components under the dual actions of Gy_y x I and Sp(2n R) %, H,, and in (3.85) the
Fock space F(C**W=1)) is decomposed into isotypic components of the dual actions of
Gy-1 and Gy_; ~Sp(2n R). Thus if:
(1) n < [N/2] then n < [N/2— 1] and (ug,_,) corresponds io the signature (£q, ..., £,),
L1226 20 ,
(i) n = [N/2] then n =2 [(N — 1)/2] and (jig,.,) corresponds to the signature
1,0 s Epv=ny2n-

It follows from [7] that the algebra of all Casimir 1nvar1ants of the dual representations
RG and LG coincide and they are generated either by the s Jstem {Tr([RST")},, where [RC]
is the (N — 1) x (N — 1) matrix whose (g, &) entry is ab, is giver by (3.5), or by the
system {Tr([LG Plowithl <s<nifn <[N/2, and 1 s SN -1)/2] if [N/2] < n.
But since the actions of Gy—; x I and Sp(2n, R) x, H, on .?-'(CC""(N DY@ F(C*1) are dual,
theorem 1 implies that the-algebra of Casimir invariants of the action of Sp(2n, R) x; H,
on F(C™N) coincide with that of RO ® 1, and hence, by transitivity the conclusion of the
theorem follows. : |



6868 W H Klink et al
4. Casimir operators of SO*(2n) x. (H, x Hy)

Let N be an even integer and consider the restriction of the representation R on the Fock
space F(C™V) to the symplectic group of order N. The symplectic group, denoted by G
in this section (not to be confused with G in sections 2 and 3) is the subgroup of GL(N, C)
that preserves a non-degenerate skew symmetric bilinear form of CV. Let o be the matrix
of this form with respect to some basis of CV, then o~! = —¢ = ¢ and

G ={g € GL(N,C)|gog" =}

Let R denote the restriction of R to G, then a system of generators of the infinitesimal
action of RY is given by

8 .
RG= > (zm-cr,g-+zc,,jcrk,-)ﬁ 1<, j<N. 4.1
b ™

As in the case of the orthogonal group, to find the dual representation of the infinitesimal
action of R® we consider the non-constant generators of all RC-invariant polynomials
defined by :

pup(Z) = (ZoZNep = Y ZujouZm  1<aB<n
£ i=1,..N

and the G-invariant differential operators

3 ]
Pop(D) = Z mﬂ’ﬁﬁ 1€, B<n.

L=l N

Set Pog = —pups Dap = pap(D), and Eyg = Log + [N /218ag, then an easy computation
shows that for all oo, 8, £, v =1, ..., n we have

[Eap, Epp) = 8ppEav — SavEpg

[Eaps Puv] = 85u Poy + 88y Pua

[Eag, Dyl = —8upDay — 820Dy

[Pep, Dyv) = 8y Evp + SgvEpy — SavEpg — S Euve 4.2)
[Pap, Puu)=1{Dag, D] =0

Pup = —Ppa Dap = —Dpgo

i
P;(ﬁ = Dag D:Lﬁ =-Pa§ Eaﬁ = Epg.

1, 0 0 1,
= d S, =
o (0 —ln) o " (ln 0)

If
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then

SU(n,n) = {g € GL@2n, C)gJ,g! = 7.}
and
$0*(2n) = {g € SU(n,n)|gS,g" =-5,}

and the Lie algebra $O*(2r) of $O*(2n) consists of all matrices of the form

A B
—B AT
where A, B are n x n matrices with A skew-Hermitian and B skew-symmetric. The

complexification of §O*(2rn), which can be identified with SO(2n, C), is the set of all
matrices of the form :

X X
¥ ( 1 2T)
X; —XI

where X, X2, and X5 are complex matrices of order n, and X5, X3 are skew-symmetric.
The set

{Myp — M,B+r:.at+m My gin — Mﬁ.a-&-m M,8+n.or - Mm+n,,8} i<a.pgn

forms a basis of SO(2n, C) and the linear map which sends Mus — Mgipatn 0 Egp,

Mo prn — Mg oin 10 Pag, and Mpip o — Myyn,g t0 Dy g defines a faithful representation of

$O0*(2n) on F(C"*N). By construction this representation is dual to the infinitesimal action

of RY. Let G' denote SO*(2r) and let LY denote the dual representatton of RY, then the

pair (RY, L") forms the oscillator representation of the pair (G, G') on F(C™V) (cf [4]).

As in section 3 we refer the reader 10 [9-11] for the global action of LY on F(T**V),
Again we have the decomposition

FEN) =Y @Itchy , ' 4.3)
(Aa)

where (Ag) corresponds to the signature (m,, ..., m,) for G’ and the signature

(fnl,---amn,oo---,o)

o

NJ2
for G if n < N/2, and

(lml,-n-,mN/z,O,---,Q)

h

for G’ and (my, ..., myp) for G if n 2 N/2.
Let [RS] denote the matrix whose (7, j) entry is given by (4.1), let

o [E P]
=[5 ]
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denote the Zn x 2Zr matrix whose entries E,g, Fy g, and D, g are given by (4.2). Then by
theorem 1 the algebras of the representations R® and LC coincide and they are generated
by the constants and by the algebralcal]y independent non-commutative trace operators
Tr({RET?), or equivalently, Tr({LET¥), 1 < i < nifn < N/2, and 1 <i < NJ2 if
n = N/2. Again we remark that the E,z generate a subalgebra Tc, the P,z generatc a
subalgebra B, and the Dy generate a subalgebra %3_ in such a way that Te + B, +P_
gives a realization of the Lie algebra SO(2n, C).

So far, the dual representations of Sp(N) and SO*(2n) behave exactly as the dual
representations of O(N) and Sp(2n, R) as treated in section 3, but, as we shall see, there
will be a quite remarkable and interesting difference when we restrict the action of Sp(N)
to a subgroup isomorphic Sp(N — 2). This difference arises not because there is no natural
subgroup Sp(¥ — 1), so that the restriction goes down by two steps (as will be discussed in
the conclusion, the treatment of the restriction of the actions of U (N) to U'(N— M) or O(N)
to O(N —M), 1 < M < N-—1, is a straightforward generalization of the case M = 1), but
because of the action of the group SO*(2n) on the Heisenberg group HY~! x HXN, which
we shall define shortly, is quite different from the action of the group U(n) on HN~1x HY,
for example. This interesting phenomenon leads us to search for a group sitting between
Sp(N) and Sp(N — 2) which would play the role of the ‘missing subgroup Sp(N — 1)’;
this will be investigated in section 5.

Choose o = on2 of the form

Onj-1 1 0

—————

0 J

J_(O —1)
“\1 o

and G-I isa(N—-2) x(N- 2) matrix such that (U'N/Z._])_! == —G’N/2_1O'E/2_l. Let

G = Gy be defined by this form o and identify the subgroup Gy defined by ow/2-; with
the subgroup of G which consists of all matrices of the form

¥ 10
— = ¥ € Gy-a.
01,

If RS denotes the restriction of RS to Gy, then a system of generators of the infinitesimal
action of RC is given by

where

3
RS = E (Zoa(onp2=1)10 + Zap(ON2-1)ka) 7 I<a,bSKN=-2. (44

=1,...,n
k=1, N=2

The infinitesimal dual action of R isa representation of the semidirect product S 0*(2r)®qs
Hyn on F(C™N). The action of the Heisenbesg algebra on F(C"*V) is defined by the
operators

3 d
VA
8Zy, N1 N 0Zy

Zy.N—l
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which generate a direct sum of two Heisenberg algebras. However, the action of $§0*(2n)
on this direct sum is indecomposable as seen by the following equation for all @, 8, ¥ =
1,...,n:

8 s 3
Y 9Zgn 7Y 0Zan

[Pag, Zyn-1] =0 [Dog, Zy y-11 =18

[Eug: Zyn—1) = 8y Zo N1

]
‘:Paﬁ, azy.N—]] = SQYZ'B‘N —,3,9?2&,,\,

) 3 3
D * — =0 E y — =—6
LAY LAY Y 8 Zg N1
Y, b B,

; (4.5)
A =0 Dy, Z =gy ——m— — &y, —————
[ &) }’.N] [ ¢ }’.N] ﬂy BZQ‘N_I ay azﬁ.N_l
[Eaﬁ: Zy,N] = aﬂyza,N 7
e
FPope —— 3Z, n =8y Za,N-1 — Say Zg.N—-1
a a a
D * = 0 E y T = -'6 —_—.
|: " 3Zr.N] [ = azy,N:I ¥ 8Zsn
Let
-Erﬂ = - Zoi(Onpa-1)5: Zg,
Lj=1,.. N2
D= > 2 ol 1€ <
W L B MEViGg Sapn (4.6)
I -2 i
E Zo—— 41 (N 2)8,
af = af-
=t N=2 BZﬁ,

Let E, F, 5, denote the matrices whose (¢, 8) entry, 1 £ a’,ﬁ £ n,is Eaﬁ, Fc,,,g, and 5,,5,
respectively, as given by (4.6), and set

. [E P

I={~ ‘= |

(Z7] [ 5 _ ET]
then we have the following theorem.

Theorem 4. Let H, x H, dencte the Heisenberg group whose infinitesimal action on
F(C"™¥) is given by the generators {Z, n—1, 3/(0Zy n—1), Zy N, 0/(BZyn} v = 1,.

then the algebra of all Casimir invariant differential operators of the representation ¢ of the
semidirect product §O*(2n) x; (H; = H,) which is dual to the representation RS on
F(C**Ny is generated by

(i) the constants and the n algebraically independent Casimir operators Tr([LG Pri<sg
nifn<N/2;

(ii) the constants and the N/2 algebraically independent Casimir operators Tr([L¢T%),
1<sg N2 ifn2 N/2
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Progf. "We have the decompositions

f(Can) — Z @(I[uaﬂ_z)(cﬂx(N—z)) & _F(C”xz)) 4.7a)
(ﬂGN_g)
F(CnX(N—Z)) - Z éI@-cN-;)(C“"(N—Z)) (4.7b)
(FLGN_z)

where in (4.7a) the Fock space F(C"¥) is decomposed into a direct sum of isotypic
components under the dual actions of Gy_; x I and SO*(Zr) x; (H, x H,) and in
(4.7b) the Fock space F(C**W—2) is decomposed under the dual actions of Gy—, and
vz 72 S0*(2n, R). Thus if
({)n < N/2then n < N/2 —1 and (ug,._,) corresponds to the signatures
(Elr--')’envov--"o)

—

N/;—! :
of GN-Z and (2;, ey E,,) of G:\’—Z; 21 2 v 2 En >‘O.I
(idn = N/2thenn > N/2—1 and (ug,_,) corresponds to the signatures (£, ..., €x/p—1)
of Gy_2 and
1sos Enpp1,0....,0)
—
of Gy_,.

As in section 3, it follows from [7] and theorem 1 that the algebra of all Casimir
invariants of the action of SO*(2n) w; (H, x Hy) on F (C**V) is generated by the system
[Te([LC1P)),, 1 Ks<nifn<N/2,and 1 s K N/2=1if N 2 N/2. O

5. Dual representations of the chains Sp(N —2) C Sp(N —2) & Hy; -1 C Sp(N)
and SO*(2n) & (Han) D SO*2n) & A, D SO*(2n)

In this section we let N = 2k and fix a symplectic form

Tp—t | 0
6 J

; (o -1 ; ( 0 —1k_l)
= an Tlw] = .
1 0 e O P

Then the Lie algebra G© = sp(2k, T) consists of all matrices of the form

where

k-1 k-1 2
—_—— —— ———
k—-—I[ X I X, I W
oy
=l xo X7 W

—_—— —_———— ] = —

oA \Nywp o —owp v
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where X5 and X35 are complex symmetric matrices and the complex 2 x 2 matrix V is
such that VJ = —JV7T. Recall that since M; ; denotes the 2k x 2k matrix with 1 as the
(i, j) entry and 0 elsewhere, we can choose a basis for sp(2k, C) as follows:

Jii =My — M ik

@ 1 8ij = Misx—1,j + Mjip—i,i 1gi,jgk—1
L iy = M ji—y + M ik
Fiak=1 = Miae—1 — Moy j4i-1
8itk~1,2k~1 = Misg-1,26-1 + Mot ; Igigk—-1
(I) (5.1)

Fioe = Miox + Mog—1, k-1
A ek—1,26 = Mig—1,26 — Mag— i
Fremy = My 10—t — Mo

(IH) 1 8261 = Ma—1%

Aok = Mo 261
where in (5. 1) (I) forms a basis for sp(2k—2, ) and (IIE) forms a basis for s£(2, C). Recall
that

n

a ..

Rf;=ZlZm- Zo  \Shis
o=

then the representation of sp(2%k. C) in F(C**2*) which maps M;; omto Rij, Fyy —
Ri; — Rjpi—1,i+x-1, etc, is faithful. By an abuse of language. let fi;, g.;, kyj, etc, denote
the images of fi;, gij. Ay, ete. under this representation.

Let H;_; denote the Lie algebra generated by Jizk—1, Givr—1,26—1, and Az, 1 i K
k — 1. Then it is easy to verify that

[fi2e-1: Froe-11 =0
(giti-1.26~1s &+k-1.26-1] =0 €L, jgk-1

52)
[fi 21+ 8jak—1.26—1] = 855 (—2hoy—1)

[fiz—1, Aog=1] =0 (gr+k—1.26-15 Bzg—1] = O.

It follows immediately that H;_; is a Heisenberg algebra of rank k—1. An easy computation
also shows that

[fijs feae—1] = 8 fi 2

[fiss Bewk=126—1] = —8;¢&jpkr1,26~1

{8 Fee—1] = 8jeitn—1,20—1 + EreQitic—1,24—1

[gif, 8esh—1, 211 =0 1<t jé€k—1 - (3.3)
(Rij. fou—1] =0

(Bij, Gerr—1,26—1] = Sje fiox—1 + Sie F. 20—

Ufijs b1 =0 (85, ha—1] =0 [hij, hag—1] = 0.
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It follows that we have a semidirect sum Sp(2k — 2, C) & Hy—; of Lie algebras. Similarly
if we let H;_, denote the Lie algebra generated by fi 2, Risk—1.26 82-1, 1 < i <k — 1,
then #j_, is a Heisenberg algebra isomorphic to Hi_;. In fact the semidirect sums
Sp(2k—=2, CY®Hy-1 and Sp(2k-2, C)@H;’_l are the two isomorphic maximal Lie algebras
sitting between Sp(2k — 2,C) and Sp(2k,C). It can be shown the dual representation
of Spk — 2,00 Hyy (Sp(2k—2,0) & ’H“f_l) on F(C™™®) js a representation of
SO*(2n) @ A, (SO*2n) @ A7) on F(C**%), where A, , (AY,) is the Abelian Lie
algebra defined by the generators

(5.4)

It is also easy to verify that SO*(2n) @ A, , (SO*(2n) & A;,"n) is a semidirect product of
a simple Lie algebra with an Abelian Lie algebra. However, neither the Casimir operators
of Sp(2k —2,C) ® Hy—1 nor of SO*(2rn) @ A, » are easy to compute.

6. Conclusion

We have shown how to compute the Castmir operators of semidirect products of the groups
U{n) and Sp(2n, R) with the n-dimensional Heisenberg group as well as the semidirect
product of SO*(2n) with the direct sum of the two Heisenberg groups, In every case
the procedure for computing all the (algebraically independent} Casimir operators was to
associate a representation of the semidirect product with a dual representation of the compact
groups (N — 1), O(N — 1), and Sp(N — 2), respectively (for Sp(¥N), N must be even)
on the Fock space F(C™N). Theorems 2, 3, and 4 prove that the semidirect product
Casimir operators are equal to the algebraically independent Casimir operators of U(N —1),
G(N — 1), and Sp(N — 2), respectively, Casimir operators whose forms are well known.

Our procedure for obtaining Casimir operators is easily generalized to semidirect
products of U(n), Sp(2n.R), and S§O*(2n} with direct sums of Heisenberg groups. For
the semidirect product of U/(rn)} with H, & --- @ H,, where the direct sum is taken M
times, the Casimir operators are just those of U(N — M), 1 £ M < N — 1. Similarly, the
semidirect product of Sp{2n, R), with H, @ --- © H, has Casimir operators equal to the
Casimir operators of O(N — M), 1 € M € N — 2. The semidirect product of SO*(2n)
with a direct sum of Heisenberg groups is only defined for M even. The Casimir operators
are then those of Sp(N — M), N, Meven, 2 M L N -2,

Besides the semidirect products discussed in this paper, there are other semidirect
products of interest whose Casimir invariants can be obtained by the duality arpuments
used in this paper. For example, the semidirect product U(n) X H,, discussed in section 2
has the subgroup O{n) x H,, with a new set of Casimir operators. In this case U (n} x H, is
dual to U(N — 1), so that O(n) w H, will be dual to a group containing /(N — 1), namely
Sp(2(N — 1), R). whose Casimir operators are known. Casimir operators for groups like
O(n) % H, and Sp(n) x H, (and direct sums of Hy} will be discussed in a subsequent paper.

It is well known that the Gel'fand—Zetlin scheme for labeling basis elements in
representation spaces by chains of subgroups works for the unitary and orthogonal, but
not for the symplectic groups. For the symplectic group chain, Sp(N) > Sp(N —2) >
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- D 8p(2), N even, a given irreducible representation of Sp(N) will contain irreducible
representations of Sp(N — 2} with multiplicity in general greater than one.

By going to the complexification of the compact group Sp(N), we have found
a group ‘between’ Sp(N,C) and Sp(N — 2,C), namely a semidirect product group
Sp(N — 2,C) x Hy_s. In fact, there are two such semidirect products, as seen in
section 5, equation {5.3) ff. Further we have shown that Sp(N — 2,C) % Hy_» is a dual
to SO*(2n) x A, . the semidirect product of §O*(2n) with an Abelian group, with two
different Abelian groups corresponding to the two different Heisenberg groups.

However, it is not possible to use the theorems proved in this paper to compute the
Casimir operators of Sp(N —2, Cyx Hy_5. The problem of finding these Casimir operators
and then using their eigenvalues to resolve the multiplicity of the symplectic group chain
will be discussed in a subsequent paper.
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